Nitrate and nitrite microgradients in barley rhizosphere as detected by a highly sensitive denitrification bioassay.
نویسندگان
چکیده
A highly sensitive denitrification bioassay was developed for detection of NO3- and NO2- in rhizosphere soil samples. Denitrifying Pseudomonas aeruginosa ON12 was grown anaerobically in citrate (30 mM) minimal medium with KClO3 (10 mM) and NaNO2 (3 mM), which gave cells capable of NO2- reduction to N2O but incapable of NO3- reduction to NO2-. Growth on citrate minimal medium further resulted in the absence of N2O reduction. When added to small soil samples in O2-free vials, such cells could be used to convert the indigenous NO2- pool to N2O, which was subsequently quantified by gas chromatography. Cells grown in KClO3-free citrate medium with 10 mM NaNO3 as the electron acceptor were capable of reducing both NO3- and NO2-, and these cells could subsequently be added to the sample to convert the indigenous NO3- pool to N2O. Concentrations of both NO3- and NO2- were thus determined as N2O, with a detection limit of approximately 10 pmol of N. The bioassay could be used to determine NO3- and NO2- pools in 10-mg soil samples taken along a microgradient in the rhizosphere of field-grown barley plants. At both low (10%, wt/wt) and high (18%, wt/wt) water content, relatively high levels of NO2- were found in the rhizosphere compared with bulk soil. Under dry conditions, NO3- was also more abundant in the rhizosphere than in the bulk soil, whereas such a difference was not observed at the high water content. The roles of plant metabolism and bacterial nitrification and denitrification processes for NO3- and NO2- availability in the rhizosphere are discussed.
منابع مشابه
Autotrophic denitrification of synthetic nitrate-contaminated groundwater in up-flow fixed-bed bioreactor by pumice as porous media
Background: Increasing nitrate concentrations in groundwater resources is considered a common environmental and public health problem worldwide. In this research, an autotrophic up-flow bioreactor with pumice as media was used to study the effects of the sulfur-to-nitrogen (S/N) ratio and empty bed contact time (EBCT) on nitrate removal efficiency and byproducts. Methods: Experiments were car...
متن کاملChemotactic Motility of Pseudomonas fluorescens F113 under Aerobic and Denitrification Conditions
The sequence of the genome of Pseudomonas fluorescens F113 has shown the presence of multiple traits relevant for rhizosphere colonization and plant growth promotion. Among these traits are denitrification and chemotactic motility. Besides aerobic growth, F113 is able to grow anaerobically using nitrate and nitrite as final electron acceptors. F113 is able to perform swimming motility under aer...
متن کاملApplication of barley straw to remove nitrate from drainage water
ABSTRACT-Nowadays farmers often use N-fertilizers to increase crop yield, but they lost quickly by leaching causes environmental contaminations that reported as most important source of pollutant. Although biofilters are useful for removing nitrate from drainage water, but many researches show that they need an external carbon source to sustain denitrification. Many researchers study on differe...
متن کاملThe conversion of nitrate in water to diatomic nitrogen gas by immobilized Pseudomonas stutzeri on vermiculite
Denitrification is a reduction of nitrate by heterotrophic and autotrophic bacteria that may ultimately produce molecular nitrogen (N2) through a series of intermediate nitrogen compounds.Vermiculite is a hydrous phyllosilicate mineral (Mg, Fe+2,Fe+3)3[(Al,Si)4O10](OH)2·4H2O with several layers for bacterial immobilization. The goal of this study was removal of nitrate from water with vermiculi...
متن کاملExpression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri.
The onset and cessation of the synthesis of denitrification enzymes of Pseudomonas stutzeri were investigated by using continuous culture and defined dissolved oxygen levels covering the full range of transition from air saturation to complete anaerobiosis. Expression of nitrate reductase, nitrite reductase (cytochrome cd1), and N2O reductase was controlled by discrete oxygen levels and by the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 58 8 شماره
صفحات -
تاریخ انتشار 1992